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Abstract

The growing complexity of geophysical systems, like
earthquakes and volcanic  eruptions, requires
computational models that can manage enormous,
nonlinear and multidimensional datasets in real time.
Classical computing methods still yield results but are
often not designed to cope with the scales and
stochasticity of seismic and volcanic observations, so
quantum computing provides a disruptive technology
to tackle this issue, enabling geophysical modeling to
entirely transform into a capacity to process and
analyze complex patterns at massive scales. This study
provides an overview of the potentials of various
quantum algorithms such as the Variational Quantum
Eigensolver (VQE), the Quantum Approximate
Optimization Algorithms (QAOA) and quantum-
enhanced Monte Carlo simulations to simulate
geophysical processes.

The results of these models will be of particular
relevance to modeling partial differential equations,
inverse  problems and tasks of uncertainty
quantification that describe seismic wave propagation,
magma chamber flow and tectonic stress diffusion. We
will also discuss how quantum machine learning
(OML) models can improve the forecasts of earthquake
epicenters, fault detections and eruption forecasts
utilizing quantum feature spaces. Further, we will
include a discussion of both quantum sensors and edge
quantum processors, with attempts for in situ real-time
data collection and data processing in hazardous
areas.
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Introduction

Quantum computing is a new field that uses quantum
mechanical principles (e.g. superposition, entanglement,
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quantum  tunnelling) to encode and somehow
compute/process information in ways fundamentally
different from traditional computers. The conventional unit
of quantum information, a "qubit," allows for parallelism in
the computation process, ultimately allowing quantum
systems to solve complex optimization and simulation
problems far surpassing classical computers®. One area
where this power can be innovative is geophysical modeling,
through which we process information critical to our
understanding of the propagation of seismic waves, the
build-up of tectonic stress, magmas of varying viscosity and
potential early warning signals of an impending event'.

Typical high-performance computing'! systems have always
had challenges related to density and prediction accuracy
when modeling geophysical phenomena constrained by non-
linearity, high dimensionality and uncertainty'3. Innovations
in quantum computing'3, particularly quantum algorithms
such as the variational quantum Eigensolver (VQE) and
quantum-enhanced machine-learning models which may
produce similar results as partial differential equations and
other data-intensive geosciences applications®, have
benefitted computational modeling for hazard and risk
analysis. The study shows that quantum computing'® has the
potential to improve the modeling of geophysical hazards
through enhanced simulations (with great accuracy), real-
time data assimilation and more efficient and effective
decisions for supporting forecasts, earthquakes and volcanic
eruptions’.

Geophysical Modeling

Specialty, finite element and spectral methods are used in the
development of adequate estimations for deep seismic wave
propagation, plate tectonics and magma flow'?. Each of
these means represents a key advancement in our
understanding of seismic events (i.e. earthquakes and
volcanoes), but each has a computational cost and, beyond
that, a barrier of entry given their need for high-performance
computing resources required to derive numerically
complex partial differential equations over large spatial and
temporal scales'®.

Even with those resources, there remains a limit to model

resolution, real-time limitations deepened with complexity
and even greater institutional barriers of uncertainty given
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only statically heterogeneous and data-scarce regions are
studied in these models'*.

Equation 1 - Seismic Wave Propagation Equation
(Classical PDE Model): Used to model seismic wave
behavior in the Earth’s crust:

pot202u =V - (A(V-u)l +2us(u)) + f

where p is Density of the medium, u is Displacement vector
field, A, p is Lamé parameters (elastic constants), g(u) is
Strain tensor, f is Source function (e.g. fault rupture), V- is
Divergence operator and I is Identity matrix.

Purpose: Classical formulation to be solved using quantum
algorithms (e.g. VQE or HHL) to accelerate PDE solutions.

Equation 2 - Quantum Variational Optimization for
Energy Minimization: Used to simulate stress distribution
or potential energy in geophysical systems via VQE:

E®) = (6) | H" | ¥(6))

where E(0) is Expected energy (objective function), y(0) is
Parameterized quantum state, H* is Hamiltonian operator
encoding geological structure and 0 is Tunable parameters
optimized by classical optimizer.

Equation 3 - Prediction Accuracy for Eruption or
Earthquake Forecasts: Used to evaluate prediction model
output accuracy:

Accuracy =TP +TN + FP + FNTP + TN x 100

where TP is True Positives (correctly predicted events), TN
is True Negatives, FP is False Positives and FN is False
Negatives.

Purpose: Validates quantum-classical ML models for early
warning predictions using seismic and volcanic datasets.

With those aforementioned limitations, there are
consequences given the importance of accurate and timely
geophysical prediction for disaster resilience for timely
responses in disaster preparedness for early warning, which
directly correlates to lives saved and infrastructure spared in
areas of high risk from geo-hazards?.

As calls for increasingly sophisticated, real-time prediction
of geological events for disaster resilience response
frameworks arise, the interest in more powerful
computational frameworks to satisfy the demands of large
geophysics datasets increases considerably.

Furthermore, it is insightful to note that support of
conventional infrastructure, which is contemplating its own
limits of scale and creates some interest in emerging
technologies such as quantum computing that can
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theoretically process specific modelling tasks exponentially
faster than conventional methods at this point in time!°.

Introduction to Quantum Computing

Quantum computing is based on fundamental principles of
quantum mechanics, such as superposition, entanglement
and quantum interference. Using the principle of
superposition allows qubits (quantum bits) to exist in
multiple states at the same time, unlike classical bits, which
can only be in state zero or state one or not. Entanglement
means that relative to each other, qubits can be correlated so
that the state of a qubit immediately correlates to a distant
qubit, allowing for chained computations to be further
connected. While classical computers process information
one piece at a time through the use of logic gates and
transistors, quantum computers can look at many possible
solutions all at once. Quantum computers are inherently
parallel as they can multiply and divide "N" bits without time
or prior operations in the same way classical computing must
do serially.

Data Input

<

Quantum
Preprocessing

<

Quantum solver

\ 4

Geophysical
Modelling

4

Results

Geophysical
Modelling

Figure 1: Quantum Computing-Based Geophysical
Modeling Workflow

Classical systems are excellent at linear deterministic

problems. Still, they perform poorly concerning
combinatorial problems or when dealing with high
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dimensionality in variables, which is common amongst
scientific simulations. Thus, using the full power of quantum
computing through quantum parallelism will significantly
accelerate simulations of nonlinear dynamics and
probabilistic events and those involving massive data sets
and, more than likely, complex phase interactions;
geophysical models for earthquakes/volcanic eruptions
evaluation will be strengthened in this vein. This includes
problems that require solving coupled differential equations
and those with uncertainties and forecasting rare devasting
events.

Figure 1 illustrates that this block diagram illustrates the
end-to-end implementation for using quantum computing in
geophysical modeling. It starts with raw data input, then
quantum preprocessing and solving and enters into a
feedback loop with modeling and results. The center of the
system, geophysical modeling, moves forward with
quantum solver feedback and real-time feedback. This
modular system allows us to obtain greater accuracy and
efficiency for simulations and adaptive prediction!®.

Figure 2 illustrates that the architectural visualization shows
how IoT signifies seismic data, satellites and people as
inputs interact within the same data ingestion layer.

Quantum computing modules work in tandem with
geophysical models to exemplify earthquakes and
volcanoes, both dynamic simulations. Both simulation
outputs drive an integrated visualization and analysis system
for live predictive forecasting. The model depicts a data-
driven and quantum-augmented process for scalable and
accurate geophysical predictions.

ToT Seismic Data
Sensors
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Vol. 18 (12) December (2025)

All of these ought to benefit from quantum algorithms such
as the Variational Quantum Eigen solver and other Quantum
Monte Carlo methods. Thus, quantum computing is one of
specific computational process/better way, not merely a
faster equivalent.

Quantum Computing
Geophysical Modeling
Quantum computing offers limitless possibilities for
advancing geophysical simulations by utilizing quantum
algorithms applicable to simulating complex natural systems
and processes, such as seismic wave propagation. Current
methods of providing commercial seismic models use large-
scale partial differential equations to model with finite-
difference methods. Computationally intensive approaches
are time-consuming in addition to being expensive. Using
quantum algorithms, such as the Quantum Fourier
Transform (QFT) and Variational Quantum Eigensolver
(VQE), could help drastically reduce the amount of time
needed to simulate wave behaviors, particularly in
heterogeneous geological structures. In a-like vein, quantum
machine®.

Applications in

Learning models could be applied to detect subtle signals of
potential volcanic eruption using the large datasets collected
from satellite imagery, ground-based sensors and thermal
radiation. These models can identify non-linear trends and
relationships that are simply not visible or at an even lower
cost than classical models. Enhancing and/or extending
traditional predictive capacity for volcanic eruptions is a
tremendous opportunity.
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Figure 2: Quantum-Enhanced Geophysical Modelling Architecture for Earthquake and Volcano Simulation
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Hybrid quantum-classical systems can integrate real-time
data as components of existing dynamic simulations and this
could have significant implications for improving both the
accuracy and computational efficiencies of geophysical
modeling. Quantum computing could revolutionize early
warning systems in disaster risk regions and the
dimensionality of disaster preparedness by enabling
processing speed, allowing for higher fidelity modeling and
probabilistic forecasts of random physical processes down to
the selected uncertainty criteria’.

Challenges and Limitations

Quantum computing technology promises to revolutionize
the field if it scales successfully, but we are still in the early,
emerging technology stage of technology with many limits
based on physics and technology software. One of the limits
on quantum technology is called qubit decoherence, the
physical loss of a quantum state due to environmental noise
and/or instability. Although quantum processors have
reached incredible milestones in the sense that they can
currently maintain qubit coherence, this accuracy is time-
limited (qubit decoherence) and sets the cap on how complex
and how long the quantum computation can be completed.

Many blockages remain, too, in the sense of quantum error
correction, where in order to logically represent one qubit of
data, it must be encoded redundantly across many logical
qubit representations with different physical qubits, creating
a lot of overhead. Current quantum devices are classified
generally as Nowisy Intermediate-scale Quantum (NISQ)
machines®, where the hardware is limited to < 100 qubits,
gate errors and readout errors, resulting in less reliability. For
geophysical modeling, these limitations essentially
compound as well. Current impacts of this technology on
geophysical modeling will have to address the large amounts
of data associated with simulating seismic and volcanic
system processes, monitoring and determining how to
integrate high spatial resolution grids with spatio-temporal,
time-dependent parameters, all of which go beyond the
capabilities of any existing quantum hardware.

The question is of using quantum algorithms to solve
geophysical partial differential equations or machine!’.
Learning models for pattern recognition from sensor data
will require robust, scalable implementations that are yet to
be developed. Lastly, another limitation is the absence of
domain-specific quantum libraries and simulation tool kits
for Earth.

There are now many potential solutions to these issues.
Hybrid quantum-classical architectures are being formed
that will implement the entire process. Some aspects of the
geophysical models will be done on classical computers
while quantum processors will execute specific sub-
problems such as optimization or probabilistic simulations.
Progress is being made in error mitigation methods like zero
noise extrapolation and randomized compiling to limit the
consequences of decoherence as we use quantum systems in
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more 'real-world' applications and not be entirely swayed by
what we are capable of doing in laboratory testing.

As noted above, collaboration between quantum computing
companies and researchers in the Earth sciences benefits the
development of domain-specific quantum algorithms,
training datasets and simulation benchmarks. Educational
outreach and cross-discipline training will also be necessary
to assist in empowering researchers, scientists and
technologists in geoscience with the capacity to apply
quantum computing without fear or apprehension.
Hopefully, once the hardware becomes widespread and
possibly even generationally better and the algorithmic
frameworks become simple, quantum computing will move
from an experimental to a practical state within Earth
sciences in important functions such as disaster modeling
and early warning systems.

Case Studies and Examples

Recent studies have shown the capability of quantum
computing to solve specific geophysical modeling problems.
The use of quantum annealing has allowed researchers to
optimize sensor placement for earthquake monitoring
networks with greater coverage and fewer resources than
classical heuristics. Quantom-inspired algorithms have been
incorporated into inverse problems of seismic tomography,
offering faster convergence and better imaging of subsurface
structures compared to traditional iterative methods.

Figure 3 illustrates that the diagram analyzes classical and
quantum computation around simulation time, accuracy of
prediction and energy optimization error. Overall, quantum
computing performs better for time (120s vs. 480s), better
for accuracy (92% vs. 85%) and has a lower energy
optimization error (4.5% vs. 9.2% in classical). Collectively,
these outcomes speak to the speed and accuracy of
computational quantum deployments for geophysical
situations.

Figure 4 illustrates that the line graph compares prediction
accuracy over five days using quantum and classical
computing models. Quantum computing consistently
produced better predictions than classical methods.
Quantum approaches began at 87% prediction accuracy and
reached 94% on day 5. The accuracy gap increased
substantially over the five-day period and suggests that
quantum computing has an increasing advantage as new data
is continuously collected. This pattern has implications for
the accuracy of forecasts and demonstrates how quickly and
reliably quantum models can learn and produce estimates for
use in geophysical forecasting tasks.

Prototype implementations of the VQE (Variational
Quantum Eigensolver) have also been used effectively to
model the energy dynamics of geological fault systems that
are stressed and where traditional high-performance-
computing simulation data have yielded comparable system
responses regarding both cycles and splay.
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Figure 3: Performance Comparison: Quantum vs Classical Computing in Geophysical Modeling
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Figure 4: Accuracy Comparison Over Time: Quantum vs Classical Computing in Geophysical Predictions

In smaller-scale models, there was also a reduced
computational complexity associated with a quantum
approach. These preliminary results suggest that while
quantum computing is not yet useable for large-scale
deployments (no real-time predictive model for an entire
region for an earthquake or volcano, yet), there are potential
performance  improvements by  quantum-assisted
subcomponents of geophysical analysis, especially in
regards to optimization or probabilistic forecasting
applications. Continued advancements and optimization will
lead to new research opportunities to consider real-time
predictive models of earthquakes and volcanic activity that
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can be achieved with the size and speed of quantum
processors. Future research must ensure scalable algorithms,
produce hardware that is resilient to noise and connect
quantum workflows to existing geoscientific workflows to
fully realize the advances in Earth system science with
quantum computing.

Conclusion

The study of quantum computing for geophysical modeling
has yielded a number of significant results. Quantum
pragmatic algorithms such as Variational Quantum Eigen
solvers (VQE), Quantum Approximate Optimizations and
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quantum enhancements to machine learning in handling
non-linear dynamics, high-dimensional data and real-time
decision-making tasks are important issues. While these
should currently be treated as small-scale simulators due to
the current hardware availability issues, the first results
present measurable improvements in optimization, pattern
recognition and inverse problems.

These promising results reveal the increasing promise of
quantum systems as a complementary or support tool to
classical systems in these types of complex simulations,
specifically over segments of the larger sequences of seismic
or volcanic modeling workflows. To conclude, quantum
computing has potentially transformative impacts on
geophysical modeling through new means to model, forecast
and understand some of Earth's most complex and dangerous
phenomena.

As this field develops, the merging of Earth science and
quantum technologies has the potential to improve early
warning systems and to increase disaster resilience, as well
as to improve scientific understanding of a dynamic Earth.
With continued research, collaboration across disciplines
and strategic investment, quantum computing could change
the course of the future of geoscience in the coming decades.
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