

Review Paper:

Quantum Computing Applications for Geophysical Modeling of Earthquakes and Volcano Eruptions

Umaeswari P.^{1*}, Thenmozhi M.², Vinod Kumar P.³, Santhosh K.N.S.K.⁴, Srinivasan J.⁵ and Selvam Ponmurgan Panneer⁶

1. Department of Computer Science and Business Systems, R. M. K. Engineering College, INDIA
2. Artificial Intelligence and Data Science, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, INDIA
3. Department of CSE (Data Science), ATME College of Engineering, Mysuru, INDIA
4. Department of Computer Science and Engineering (AIML), Aditya university, Surampalem, INDIA
5. Department of Electronic and Communication Engineering, AVS Engineering College, Salem, INDIA
6. Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai -600078, INDIA

*umaeswari11@gmail.com

Abstract

The growing complexity of geophysical systems, like earthquakes and volcanic eruptions, requires computational models that can manage enormous, nonlinear and multidimensional datasets in real time. Classical computing methods still yield results but are often not designed to cope with the scales and stochasticity of seismic and volcanic observations, so quantum computing provides a disruptive technology to tackle this issue, enabling geophysical modeling to entirely transform into a capacity to process and analyze complex patterns at massive scales. This study provides an overview of the potentials of various quantum algorithms such as the Variational Quantum Eigensolver (VQE), the Quantum Approximate Optimization Algorithms (QAOA) and quantum-enhanced Monte Carlo simulations to simulate geophysical processes.

The results of these models will be of particular relevance to modeling partial differential equations, inverse problems and tasks of uncertainty quantification that describe seismic wave propagation, magma chamber flow and tectonic stress diffusion. We will also discuss how quantum machine learning (QML) models can improve the forecasts of earthquake epicenters, fault detections and eruption forecasts utilizing quantum feature spaces. Further, we will include a discussion of both quantum sensors and edge quantum processors, with attempts for *in situ* real-time data collection and data processing in hazardous areas.

Keywords: Quantum computing, Geophysical modeling, Earthquake prediction, Volcanic eruption forecasting, Quantum machine learning, Quantum sensors, Variational Quantum Eigensolver (VQE), Quantum Approximate Optimization Algorithm (QAOA), Seismic data analysis, Early warning systems.

Introduction

Quantum computing is a new field that uses quantum mechanical principles (e.g. superposition, entanglement,

quantum tunnelling) to encode and somehow compute/process information in ways fundamentally different from traditional computers. The conventional unit of quantum information, a "qubit," allows for parallelism in the computation process, ultimately allowing quantum systems to solve complex optimization and simulation problems far surpassing classical computers³. One area where this power can be innovative is geophysical modeling, through which we process information critical to our understanding of the propagation of seismic waves, the build-up of tectonic stress, magmas of varying viscosity and potential early warning signals of an impending event¹.

Typical high-performance computing¹¹ systems have always had challenges related to density and prediction accuracy when modeling geophysical phenomena constrained by non-linearity, high dimensionality and uncertainty¹³. Innovations in quantum computing¹⁵, particularly quantum algorithms such as the variational quantum Eigensolver (VQE) and quantum-enhanced machine-learning models which may produce similar results as partial differential equations and other data-intensive geosciences applications⁴, have benefitted computational modeling for hazard and risk analysis. The study shows that quantum computing¹⁹ has the potential to improve the modeling of geophysical hazards through enhanced simulations (with great accuracy), real-time data assimilation and more efficient and effective decisions for supporting forecasts, earthquakes and volcanic eruptions⁹.

Geophysical Modeling

Specialty, finite element and spectral methods are used in the development of adequate estimations for deep seismic wave propagation, plate tectonics and magma flow¹². Each of these means represents a key advancement in our understanding of seismic events (i.e. earthquakes and volcanoes), but each has a computational cost and, beyond that, a barrier of entry given their need for high-performance computing resources required to derive numerically complex partial differential equations over large spatial and temporal scales¹⁸.

Even with those resources, there remains a limit to model resolution, real-time limitations deepened with complexity and even greater institutional barriers of uncertainty given

only statically heterogeneous and data-scarce regions are studied in these models¹⁴.

Equation 1 - Seismic Wave Propagation Equation (Classical PDE Model): Used to model seismic wave behavior in the Earth's crust:

$$\rho \partial t 2 \partial 2 u = \nabla \cdot (\lambda(\nabla \cdot u) I + 2\mu \varepsilon(u)) + f$$

where ρ is Density of the medium, u is Displacement vector field, λ, μ is Lamé parameters (elastic constants), $\varepsilon(u)$ is Strain tensor, f is Source function (e.g. fault rupture), $\nabla \cdot$ is Divergence operator and I is Identity matrix.

Purpose: Classical formulation to be solved using quantum algorithms (e.g. VQE or HHL) to accelerate PDE solutions.

Equation 2 - Quantum Variational Optimization for Energy Minimization: Used to simulate stress distribution or potential energy in geophysical systems via VQE:

$$E(\theta) = \langle \psi(\theta) | H^\wedge | \psi(\theta) \rangle$$

where $E(\theta)$ is Expected energy (objective function), $\psi(\theta)$ is Parameterized quantum state, H^\wedge is Hamiltonian operator encoding geological structure and θ is Tunable parameters optimized by classical optimizer.

Equation 3 - Prediction Accuracy for Eruption or Earthquake Forecasts: Used to evaluate prediction model output accuracy:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \times 100$$

where TP is True Positives (correctly predicted events), TN is True Negatives, FP is False Positives and FN is False Negatives.

Purpose: Validates quantum-classical ML models for early warning predictions using seismic and volcanic datasets.

With those aforementioned limitations, there are consequences given the importance of accurate and timely geophysical prediction for disaster resilience for timely responses in disaster preparedness for early warning, which directly correlates to lives saved and infrastructure spared in areas of high risk from geo-hazards².

As calls for increasingly sophisticated, real-time prediction of geological events for disaster resilience response frameworks arise, the interest in more powerful computational frameworks to satisfy the demands of large geophysics datasets increases considerably.

Furthermore, it is insightful to note that support of conventional infrastructure, which is contemplating its own limits of scale and creates some interest in emerging technologies such as quantum computing that can

theoretically process specific modelling tasks exponentially faster than conventional methods at this point in time¹⁰.

Introduction to Quantum Computing

Quantum computing is based on fundamental principles of quantum mechanics, such as superposition, entanglement and quantum interference. Using the principle of superposition allows qubits (quantum bits) to exist in multiple states at the same time, unlike classical bits, which can only be in state zero or state one or not. Entanglement means that relative to each other, qubits can be correlated so that the state of a qubit immediately correlates to a distant qubit, allowing for chained computations to be further connected. While classical computers process information one piece at a time through the use of logic gates and transistors, quantum computers can look at many possible solutions all at once. Quantum computers are inherently parallel as they can multiply and divide "N" bits without time or prior operations in the same way classical computing must do serially.

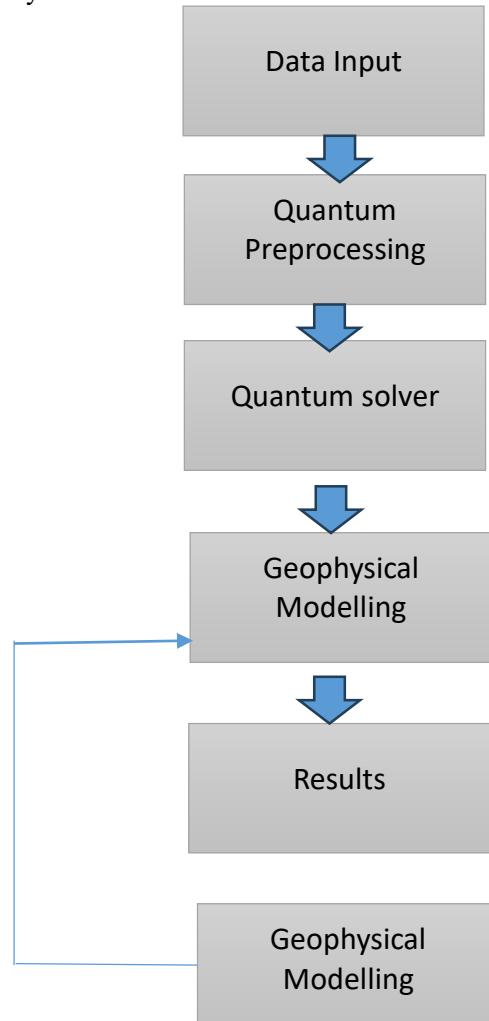


Figure 1: Quantum Computing-Based Geophysical Modeling Workflow

Classical systems are excellent at linear deterministic problems. Still, they perform poorly concerning combinatorial problems or when dealing with high

dimensionality in variables, which is common amongst scientific simulations. Thus, using the full power of quantum computing through quantum parallelism will significantly accelerate simulations of nonlinear dynamics and probabilistic events and those involving massive data sets and, more than likely, complex phase interactions; geophysical models for earthquakes/volcanic eruptions evaluation will be strengthened in this vein. This includes problems that require solving coupled differential equations and those with uncertainties and forecasting rare devastating events.

Figure 1 illustrates that this block diagram illustrates the end-to-end implementation for using quantum computing in geophysical modeling. It starts with raw data input, then quantum preprocessing and solving and enters into a feedback loop with modeling and results. The center of the system, geophysical modeling, moves forward with quantum solver feedback and real-time feedback. This modular system allows us to obtain greater accuracy and efficiency for simulations and adaptive prediction¹⁶.

Figure 2 illustrates that the architectural visualization shows how IoT signifies seismic data, satellites and people as inputs interact within the same data ingestion layer.

Quantum computing modules work in tandem with geophysical models to exemplify earthquakes and volcanoes, both dynamic simulations. Both simulation outputs drive an integrated visualization and analysis system for live predictive forecasting. The model depicts a data-driven and quantum-augmented process for scalable and accurate geophysical predictions.

All of these ought to benefit from quantum algorithms such as the Variational Quantum Eigen solver and other Quantum Monte Carlo methods. Thus, quantum computing is one of specific computational process/better way, not merely a faster equivalent.

Quantum Computing Applications in Geophysical Modeling

Quantum computing offers limitless possibilities for advancing geophysical simulations by utilizing quantum algorithms applicable to simulating complex natural systems and processes, such as seismic wave propagation. Current methods of providing commercial seismic models use large-scale partial differential equations to model with finite-difference methods. Computationally intensive approaches are time-consuming in addition to being expensive. Using quantum algorithms, such as the Quantum Fourier Transform (QFT) and Variational Quantum Eigensolver (VQE), could help drastically reduce the amount of time needed to simulate wave behaviors, particularly in heterogeneous geological structures. In a-like vein, quantum machine⁶.

Learning models could be applied to detect subtle signals of potential volcanic eruption using the large datasets collected from satellite imagery, ground-based sensors and thermal radiation. These models can identify non-linear trends and relationships that are simply not visible or at an even lower cost than classical models. Enhancing and/or extending traditional predictive capacity for volcanic eruptions is a tremendous opportunity.

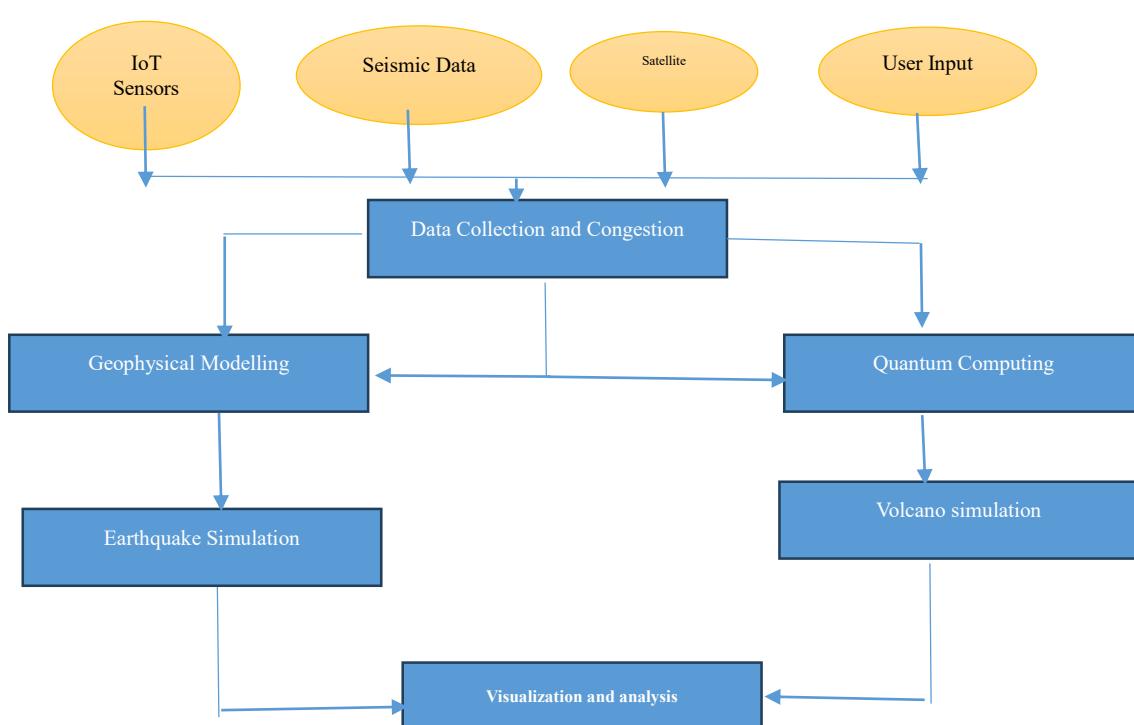


Figure 2: Quantum-Enhanced Geophysical Modelling Architecture for Earthquake and Volcano Simulation

Hybrid quantum-classical systems can integrate real-time data as components of existing dynamic simulations and this could have significant implications for improving both the accuracy and computational efficiencies of geophysical modeling. Quantum computing could revolutionize early warning systems in disaster risk regions and the dimensionality of disaster preparedness by enabling processing speed, allowing for higher fidelity modeling and probabilistic forecasts of random physical processes down to the selected uncertainty criteria⁷.

Challenges and Limitations

Quantum computing technology promises to revolutionize the field if it scales successfully, but we are still in the early, emerging technology stage of technology with many limits based on physics and technology software. One of the limits on quantum technology is called qubit decoherence, the physical loss of a quantum state due to environmental noise and/or instability. Although quantum processors have reached incredible milestones in the sense that they can currently maintain qubit coherence, this accuracy is time-limited (qubit decoherence) and sets the cap on how complex and how long the quantum computation can be completed.

Many blockages remain, too, in the sense of quantum error correction, where in order to logically represent one qubit of data, it must be encoded redundantly across many logical qubit representations with different physical qubits, creating a lot of overhead. Current quantum devices are classified generally as NISQ (Near-Intermediate-scale Quantum) machines⁵, where the hardware is limited to < 100 qubits, gate errors and readout errors, resulting in less reliability. For geophysical modeling, these limitations essentially compound as well. Current impacts of this technology on geophysical modeling will have to address the large amounts of data associated with simulating seismic and volcanic system processes, monitoring and determining how to integrate high spatial resolution grids with spatio-temporal, time-dependent parameters, all of which go beyond the capabilities of any existing quantum hardware.

The question is of using quantum algorithms to solve geophysical partial differential equations or machine¹⁷. Learning models for pattern recognition from sensor data will require robust, scalable implementations that are yet to be developed. Lastly, another limitation is the absence of domain-specific quantum libraries and simulation tool kits for Earth.

There are now many potential solutions to these issues. Hybrid quantum-classical architectures are being formed that will implement the entire process. Some aspects of the geophysical models will be done on classical computers while quantum processors will execute specific sub-problems such as optimization or probabilistic simulations. Progress is being made in error mitigation methods like zero noise extrapolation and randomized compiling to limit the consequences of decoherence as we use quantum systems in

more 'real-world' applications and not be entirely swayed by what we are capable of doing in laboratory testing.

As noted above, collaboration between quantum computing companies and researchers in the Earth sciences benefits the development of domain-specific quantum algorithms, training datasets and simulation benchmarks. Educational outreach and cross-discipline training will also be necessary to assist in empowering researchers, scientists and technologists in geoscience with the capacity to apply quantum computing without fear or apprehension. Hopefully, once the hardware becomes widespread and possibly even generationally better and the algorithmic frameworks become simple, quantum computing will move from an experimental to a practical state within Earth sciences in important functions such as disaster modeling and early warning systems.

Case Studies and Examples

Recent studies have shown the capability of quantum computing to solve specific geophysical modeling problems. The use of quantum annealing has allowed researchers to optimize sensor placement for earthquake monitoring networks with greater coverage and fewer resources than classical heuristics. Quantum-inspired algorithms have been incorporated into inverse problems of seismic tomography, offering faster convergence and better imaging of subsurface structures compared to traditional iterative methods.

Figure 3 illustrates that the diagram analyzes classical and quantum computation around simulation time, accuracy of prediction and energy optimization error. Overall, quantum computing performs better for time (120s vs. 480s), better for accuracy (92% vs. 85%) and has a lower energy optimization error (4.5% vs. 9.2% in classical). Collectively, these outcomes speak to the speed and accuracy of computational quantum deployments for geophysical situations.

Figure 4 illustrates that the line graph compares prediction accuracy over five days using quantum and classical computing models. Quantum computing consistently produced better predictions than classical methods. Quantum approaches began at 87% prediction accuracy and reached 94% on day 5. The accuracy gap increased substantially over the five-day period and suggests that quantum computing has an increasing advantage as new data is continuously collected. This pattern has implications for the accuracy of forecasts and demonstrates how quickly and reliably quantum models can learn and produce estimates for use in geophysical forecasting tasks.

Prototype implementations of the VQE (Variational Quantum Eigensolver) have also been used effectively to model the energy dynamics of geological fault systems that are stressed and where traditional high-performance-computing simulation data have yielded comparable system responses regarding both cycles and splay.

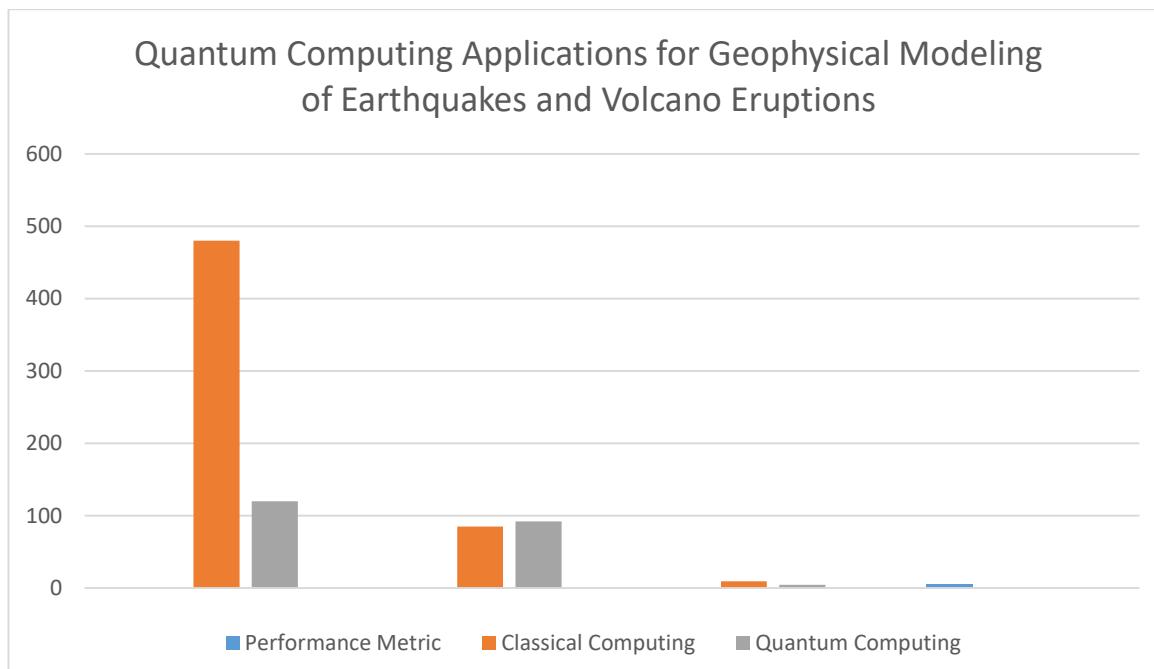


Figure 3: Performance Comparison: Quantum vs Classical Computing in Geophysical Modeling

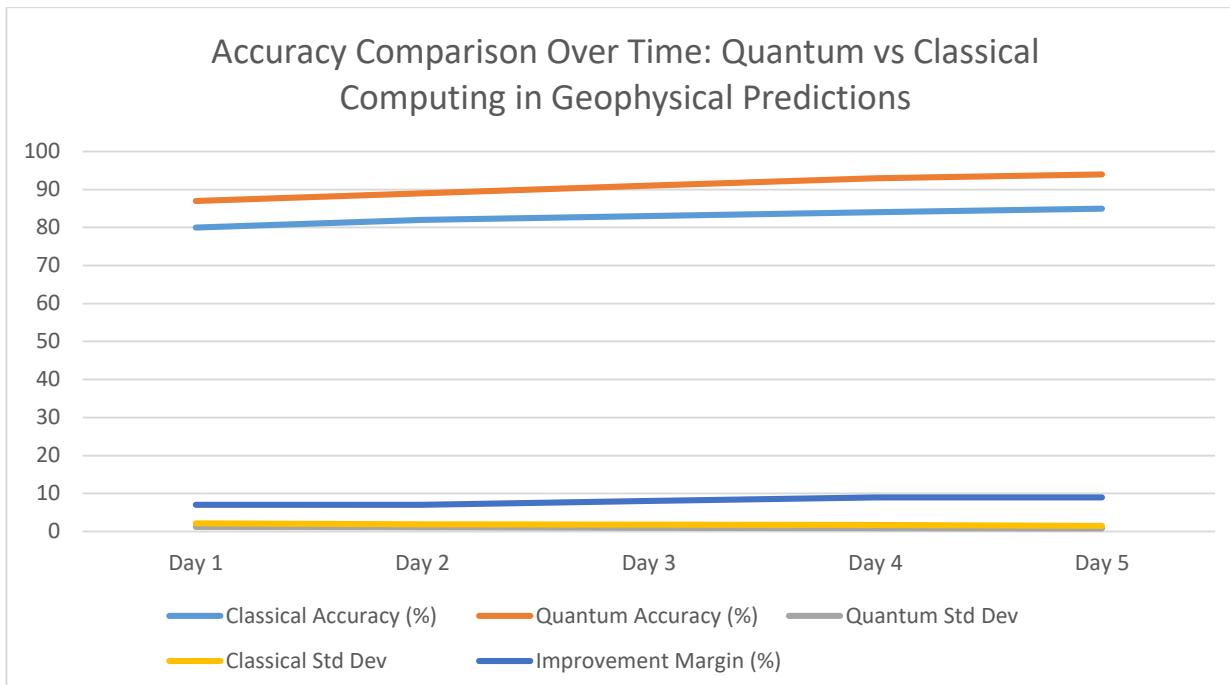


Figure 4: Accuracy Comparison Over Time: Quantum vs Classical Computing in Geophysical Predictions

In smaller-scale models, there was also a reduced computational complexity associated with a quantum approach. These preliminary results suggest that while quantum computing is not yet useable for large-scale deployments (no real-time predictive model for an entire region for an earthquake or volcano, yet), there are potential performance improvements by quantum-assisted subcomponents of geophysical analysis, especially in regards to optimization or probabilistic forecasting applications. Continued advancements and optimization will lead to new research opportunities to consider real-time predictive models of earthquakes and volcanic activity that

can be achieved with the size and speed of quantum processors. Future research must ensure scalable algorithms, produce hardware that is resilient to noise and connect quantum workflows to existing geoscientific workflows to fully realize the advances in Earth system science with quantum computing.

Conclusion

The study of quantum computing for geophysical modeling has yielded a number of significant results. Quantum pragmatic algorithms such as Variational Quantum Eigen solvers (VQE), Quantum Approximate Optimizations and

quantum enhancements to machine learning in handling non-linear dynamics, high-dimensional data and real-time decision-making tasks are important issues. While these should currently be treated as small-scale simulators due to the current hardware availability issues, the first results present measurable improvements in optimization, pattern recognition and inverse problems.

These promising results reveal the increasing promise of quantum systems as a complementary or support tool to classical systems in these types of complex simulations, specifically over segments of the larger sequences of seismic or volcanic modeling workflows. To conclude, quantum computing has potentially transformative impacts on geophysical modeling through new means to model, forecast and understand some of Earth's most complex and dangerous phenomena.

As this field develops, the merging of Earth science and quantum technologies has the potential to improve early warning systems and to increase disaster resilience, as well as to improve scientific understanding of a dynamic Earth. With continued research, collaboration across disciplines and strategic investment, quantum computing could change the course of the future of geoscience in the coming decades.

References

1. Aki K. and Richards P.G., Quantitative Seismology, University Science Books (2002)
2. Allen R.M. and Melgar D., Earthquake early-warning: Advances, scientific challenges and societal needs, *Annual Review of Earth and Planetary Sciences*, **47**, 361–388, <https://doi.org/10.1146/annurev-earth-053018-060457> (2019)
3. Arute F. et al, Quantum supremacy using a programmable superconducting processor, *Nature*, **574**(7779), 505–510, <https://doi.org/10.1038/s41586-019-1666-5> (2019)
4. Bharti K., Cervera-Lierta A., Kyaw T.H., Haug T., Alperin-Lea S. and Aspuru-Guzik A., Noisy intermediate-scale quantum algorithms, *Reviews of Modern Physics*, **94**(1), 015004, <https://doi.org/10.1103/RevModPhys.94.015004> (2022)
5. Biswas A., Modeling an Innovative Machine Learning Model for Student Stress Forecasting, *Global Perspectives in Management*, **2**(2), 22-30 (2024)
6. Cao Y. and Jiang L., Machine Learning based Suggestion Method for Land Suitability Assessment and Production Sustainability, *Natural and Engineering Sciences*, **9**(2), 55-72, <https://doi.org/10.28978/nesciences.1569166> (2024)
7. Castillo M.F. and Al-Mansouri A., Big Data Integration with Machine Learning Towards Public Health Records and Precision Medicine, *Global Journal of Medical Terminology Research and Informatics*, **3**(1), 22-29 (2025)
8. Deshmukh S. and Menon A., Machine Learning in Malware Analysis and Prevention, In *Essentials in Cyber Defence, Periodic Series in Multidisciplinary Studies*, 74-89 (2025)
9. Faccin M., Migdal P., Johnson T.H., Bergholm V. and Biamonte J.D., Community detection in quantum complex networks, *Physical Review X*, **4**(4), 041012, <https://doi.org/10.1103/PhysRevX.4.041012> (2014)
10. Jordan M.I., Learning in graphical models: A brief introduction, *Pattern Recognition Letters*, **29**(8), 1019–1022, <https://doi.org/10.1016/j.patrec.2008.01.008> (2008)
11. Khan I. and Siddiqui S., Machine Design: a Systematic Approach to Designing Mechanical Systems, *Association Journal of Interdisciplinary Technics in Engineering Mechanics*, **2**(3), 6-11 (2024)
12. Komatitsch D. and Tromp J., Spectral-element simulations of global seismic wave propagation I, Validation, *Geophysical Journal International*, **149**(2), 390–412, <https://doi.org/10.1046/j.1365-246X.2002.01653.x> (2002)
13. Liu Q., Tromp J. and Peter D., Seismic tomography using adjoint methods, *Geophysical Journal International*, **218**(2), 1012–1026, <https://doi.org/10.1093/gji/ggz204> (2019)
14. Mai P.M., Imperatori W. and Olsen K.B., Hybrid broadband ground-motion simulations: Combining long-period deterministic synthetics with high-frequency multiple S-to-S scattering, *Bulletin of the Seismological Society of America*, **100**(5A), 2095–2123, <https://doi.org/10.1785/0120090341> (2010)
15. Mukherjee A. and Thakur R., Aging Populations and Socioeconomic Shifts: A Cross-cultural Perspective, *Progression Journal of Human Demography and Anthropology*, **1**(1), 1-4 (2023)
16. Narayan A. and Balasubramanian K., Modeling Fouling Behavior in Membrane Filtration of High-Fat Food Emulsions, *Engineering Perspectives in Filtration and Separation*, **2**(1), 9-12 (2024)
17. Sherlin D. and Nikila I., Detection and Diagnosis of Brain Tumor Using Wavelet Transform and Machine Learning Model, *International Academic Journal of Innovative Research*, **9**(1), 01–05, <https://doi.org/10.9756/IAJIR/V9I1/IAJIR0901> (2022)
18. Tromp J., Tape C. and Liu Q., Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, *Geophysical Journal International*, **160**(1), 195–216, <https://doi.org/10.1111/j.1365-246X.2004.02453.x> (2005)
19. Yemunarane K., Chandramowleeswaran G., Subramani K., ALkhayyat A. and Srinivas G., Development and Management of E-Commerce Information Systems Using Edge Computing and Neural Networks, *Indian Journal of Information Sources and Services*, **14**(2), 153–159, <https://doi.org/10.51983/ijiss-2024.14.2.22> (2024).

(Received 10th July 2025, accepted 05th September 2025)
